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Figures 1 through 3:r&in using unmodified BP on training set t, and feed input x i
the resultant net. The horizontal axigegithe output you get. If t and x were still use
but training had been with modified BP, the output would have been the value ¢
vertical axis. In succession, the three figures ltaxe6, .4, .4, and m=1, 4, 1.

Figure 3.
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Figure 4: The horizontal axis |&;|. The top
curve depicts the weight decaygrdarizer
aw;?, and the bottom cuevshavs that reu-
larizer modified by the correction term=.2.
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the Hessian of'(w, t) = In[ ppr(netéy, .) | t) ] with respect tep at any pointv.

When W| # |X| |O| things are a bit more complicated\W{ > |X]| |O|, the probability den-
sity at a particulagis determined by the density at a sevtsf that extends globally W,
beyond infinitesimal neighborhoods of any particwéar Accordingly, local characteris-
tics of the density ovep (e.g., the Hessian of Infyp-(¢| t) ] with respect tg) correspond
to global characteristics W, and such local characteristics of the density dvean not
be expressed in terms of properties of a single poill.inn other words, one has no
choice but to (try to) perform the required integration avésee section (4) of the text),
and then take partial derivatives with respeap.to

If W] < |X]| |O] things aren’t so bad; we can use the analysis of the caseWirre x| |O|,
if we first perform a rotation ob. More precisely: Let the point at which we wish to know
the Hessian b = netfv', .). Calculate tha¥| ®-space vector8g / dw;, one vector for

each id {1, 2, ..., W|}. These vectors give the tangent plane &/B(see section (4) of
the text) atp. Now rotated so that the firs\W)/| of the coordinates @b are parallel to this
tangent plane. Refer to this rotated versio® @is®g. Note that probability densities over

@i equal densities oveb (up to a rotation), since the determinant of a rotation matrix

equals 1 (and therefore the “correction term” for such a rotation equals 1). Refer to the
space of those firs|| coordinates o as®'g. Note thatP'g| = W| < [P].

Having performed the rotation, we can examine the Hessian with resg@gt(ie., with
respect to coordinatd®gl; < ) rather than the Hessian with respecttoTo do this
simply perform the same calculation as at the beginning of this appendixp'wisubsti-

tuted for® throughout, and in particular substituted doin the derivatives with respect
tow. (Note that partial derivatives with respecfdg]; > \y are all infinite, since our den-

sity equal zero off of $¢).)
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Appendix Four: Calculating the Hessian in ¢-space.

This appendix presents a cursory overview of one way to calculate the Hes$iaf in
In[ po{® | 1) ], i.e., of how to calculate the Hessiarfw, t) with respect tap (see the

end of section 4). To start restrict attention to a subregivv ahd a subregion @b such

that net(v, .) is one-to-one and onto over those subregions. This means in particular that
W[ =1X]|Ol.

Write 0 / 0@ = Zj [ow; / 0@] 0 / dw;. The difficulty with this expression is that we can’t
directly write downow; / d@, only o / dw;. However these two matrices are inverses of
each other whether both are considered functiorgsonfboth are considered functions of

w. (This is because for any fixed i an@j,[0¢ / owy x 0w, / 9@ ] = &(i, j), so long as the

partial derivatives are all evaluated at the same point.) So for any function A(.) we have
@/ 0@) A(W(9) =2 {[(0/ ow)™];; (3 / ow;) A(w)},

where the inverse is understood to be of the whole matrix.

This partial derivative is a new functionvig(p)). So recursing, we get

0%/ 030@) A(W(®)
%y [0/ ow) ™ (3 1 0wy B(w)
%y [0/ ow) ™y (8 /0wy [ =y {[(0@/ aw) ™ (0 / dwy) A(w)} ]
51 [097 dw) ™ [0/ dw) ™ (8% dwidwy) Aw)
+ 31 [0/ ow) ™ (@ / dwy) A(w) (0 / dwy) [(9¢/ ow) ;).

Now we plug Aw) = In[ pgr(netiw, .) | ) ] = In[ Ryr(wW | t) ] - In[ {|& w(W)|| ] into our

two sums. The first sum acting on the first In(.) will give a linear transformatiofwpf
wherel(w) is the Hessian d¥i(w, t) with respect tav, i.e.,l(w) is the “Hessian” people
usually calculate. (As an aside, note the close relationship between this linear transforma-
tion of I(w) and the expression in equation (12) of (Buntine and Weigend, 1991).) The
first sum acting on the second In(.) gives the same linear transformation, but of the Hes-
sian of the Jacobian. These linear transformations are straight-forward to evaluate.

For the second sum, we need to eval(atedw,) [(d¢ / aw)'l]”. (The other factors are
straight-forward to evaluate.) To do this, for expository simplicity defipévi=

0@ / ow;, and Qy(w) = ow; / 0@ = C1. What we want to know is the gradient with respect
tow of D.

We have (using implied sum convention) B = & for alli, k, and (implicitjw. Taking

the gradient with respect vg, and defining f(w) = 0, Cj(w) and F;(w) =, Dj;(w), we
have 0 = k Dy + Gj F for all i, k, and (implicitjw. Multiplying on the left by [Cl]” =

Dji, we get 0 = R E; Dy + Ry. So for all I, k, and (implicity, F - which is nothing
other than that second term we want to calculate - equgl€s;(Dj).

In this way we can evaluate both sums at any particular poiahd therefore calculate
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eral, one wuldn't expect it to result in a good approximation to the Bayes-optimal answer
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In determining the &cts of a particular choice of X' one should pay close attention to the
issues discussed bel@quation (3). In general, since it is eq@lént to maginalizing dis-
tributions irvolving the “full” X, a restriction on X doeshintroduce ne singularities into

the distritutions (bgond those associated with the full X). On the other hand, it is possible
that it remwes singularities. Hwever in general it wn’t remove the singularities dis-
cussed in section (3)oFexample, @en with a restricted X, &'still true that if the weight
leading out of a hidden neuron is zero one caw @ll the weights leading into that neuron
without afecting @, and therefore you get a singularity

One natural choice of X' is to ¥miit involve Ty, the test set inputs. In such a case the
training set inputs donlive in the same space as the inputg'sf So for &mple one
couldnt simply write the likelihood as function+noise or some such. Instead ivengby

Pt ¢y = [doox Pt @y, @) P@ | @x), i.€., the restricted lihood is an intgral over

the unrestricted li&lihood. (Since we perform our calculationdhf) and therefore in par-
ticular have as our liklihood P(t ), we neer eplicitly encounter this complication.)

Theres nothing blatantly wrong with kiang X' only partially werlap with Ty however, or
perhaps een not @erlap with Ty at all (One could use X' to find a mode and then use
thatw to guess for all x, including the x in(J) Ultimately, the question is for what X' is
thew produced by our procedure a better approximation to the Bayes-opjipnairtthe
elements of . In general we cat’perform the calculation to answer this question.

Therefore we must rely on heuristics, just as in choosing between the@\éiE the
MAP w (see appendix (3)). The heuristicsadlved in that choice of MAR’suggest that
X' should werlap with the test set maximallut by no means pye it.

If we do hae X' involve Ty but [Tx| < W]/ |O|, then we & to choose someiea X’s to

go into X'. In contrast, for both reasons of computational tractability and to tryecha
approximation as accurate as possible, watyX'| to be as small as possible, and there-
fore we vant to lea&e out elements of (Jif [Ty| > W/| / [O]. (Under such a scheme, to
make our guess for an X3 Ty we'll have X' Ty, where if we wish we can force things
so that X' avays includes x" (this means that Xries with x").)

Because of this,ven if we declare that X' shouldierlap with Ty, we still haren't fully
specified the elements of X' wheri|® [W| / |O]. And unfortunatelyt isn't clear hav to
complete the specificationoFexample, if the elements of X' are close togethen we

are coarsely approximating the case where X' consists of a single element, which we
might expect to result in a better approximation to the Bayes-optimal guess. On the other
hand, such an X' might also neathe Jacobian ill-bekiad. So it5 not clear if the elements

of X' should be close together @rfapart. Ho best to choose X' is an area for future
research.

Finally, note that to get |X| |O|] small enough, as an alteentttirestricting X one might
restrict O. Havever this would mean deying the possibility of some outputs. Beémg the
possibility of some s is fine, if thg lie outside of § and Ty, so we knw we cant

encounter them. But dgimg the possibility of some ®’is far more problematic. In gen-

extra elements. (What changes if one adds new elements alieghef the distributions
along certain x’s, not the marginalizations.)
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Appendix Three: How to choose X.

This appendix@ends appendix (2), by addressing the issue of what X to use.

One might consider king X be all possible patterns on the neuralsgtput neurons.
However for mary scenarios the resulting |[Xpwid be huge. (E.g., #'the number ofal-

ues alloved by machine precision for representing real numbers.) This apparendg mak
calculating the Jacobian intractable in those scenarios, since it means that |[X| |O| is huge
(though its possible that there are some tricks which simplify calculation of the Jacobian).
This would appear to makit impossible to apply this paperesults in those scenarios.

Fortunately though, we danheed to hee X be the set of all possible input patterns. In
fact, often we wuldn't want X to be all possible inputs even if this presented no calcula-
tional difficulties. This is due to the fact that we're using modes to approximate means
(see appendix (2)). Usually the lower the dimension of a space the better the mean of a
distribution across that space is approximated by that distribution’s mode. Accordingly, it
makes sense to approximate the vectdr Bj, = [[dp @ P(@| t)]x = [dp, @ P@ | t) by the

mode of Pg, | t) rather than by the x-component of the mode @f B((see footnote (7))

In this alternatie procedure, rather than finding the mode qf |j - a one-time only
operation - and using that to guess outputs for gllirstead for each wex one calcu-
lates the mode of B | t). Olviously this procedure could be quite cpu-inteasihough
less so than calculatirig(® | t), for each ne x, which is what wel have to do to find the

exact Bayes-optimal answer). Wever in practice the issue is mute, since as noted in
footnote (7) we cam'calculateP (@, | t), i.e., we carmaginalize devn to a single x.

Fortunately there is an alternaithat i) we can calculate, ii) has tractably small |X|, and
iii) minimizes the need to recalculate distitilons with each ne x. This alternatie is to
mauginalize devn to a small set of x, X', for whick\|| < |X'| |O|. V& can perform such a
maminalizationsimply by not considering any X X'. (In particular, we would not con-
sider such x when calculating the correction term.) This is because for generic
Po(Pyox: Goxt), Marginalizing out all components @fcorresponding to XI X' gives

the distribution Q,X,(qjx-mx-), i.e., it's as though our input space were just X' all afb]r&;.

® Formally: To marginalize down to X' Writ@q)x.(fp'x') = [deox Po(@x: @) =

JAd® Pa(@) O(P¢ - @y). In the usual way this equaldv py(w) d(netfw, .xy) - @) (the

delta being a multivariable delta function, and the subscripted dot notation indicating that
we’re viewing the net parameterizedyas a mapping from X' to O rather than from X to

0). Accordingly,pq,X,(net@v', (x))) = Jaw py(w) d(netfw, .x) - netv', (xy)), and simi-

larly for conditional probabilities. Comparing to equation (1), we see that this is identical
to what we would have gotten had X been restricted to X' from the start. QED.

101 other wordsas far as marginalization is concerned, it doesn’t matter how you define
X (or X"); if you add elements to X, but then marginalize the resultant distributions down
to the original set, you get the same distribution as you would if you’d never added those
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justification for MAP estimators in (Buntine and Weigend, 1991), for example. (“The pos-
terior probabilities ... represent functions that should be maximized.”) Since the quantity
we directly want to know is (almost alwayg)notw, such reasoning means we should
guess the MAR rather than the associated with the MAR. Simply put, it makes intui-

tive sense to guess the most likglgiven the data, but it's very hard to come up with any
intuition justifying use of the associated with the most likely.

5) Phrased differently, loss functions almost always congenot (directly)w. So the
“natural” distribution of interest is B( t), not P{ | t); R@| t) is more directly informative

to us than is R{ | t). Therefore if one is going to use MAP estimators, the “natural” one is
the MAP @, not the MAPw.

6) As an example, note that often we’re interested in quantities like the posterior variance
around the MAP estimate, which tells us how “peaked” the posterior distribution is about
that estimate. Such variances are useful when they cogcgrace, but variances

space are not nearly so illuminating. So agispace is the space of primary interest.
(Even if we were to use thgassociated with the MAR, it's hard to see why we would

be interested in the&-space variance about thatather than the-space variance about

it.) Indeed, see (Denker and LeCun, 1991; MacKay, 1992) for examples where people
choose to estimatgspace variances rather tharspace variances.
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ated with) the mode of ®(| t).7 However as demonstrated in the text, in general the MAP
¢ doesnot correspond to the associated with the MAR.

So should we try to find the MA@ or the associated with the MAR? l.e., should we

use BP modified to perform an ascent ip P{), or should we use conventional BP which
instead outputs the arising from an ascent of W(| t)? The proper way to address this
question is to see whiahgives a better approximation to the Bayes-optimgl low-

ever such a calculation is daunting. This is especially so when one realizes that the real
guestion we want to answer is how tphassociated with a randomly chodecal peak of

P(w | t) compares with a randomly chodenal peak of P¢ | t). (Gradient ascent proce-
dures don't calculate global peaks in general.) So we have to resort to non-rigorous argu-
ments to choose between the t@is (and for that matter, to justify conventional BP
within the Bayesian decision theory paradigm).

In most of the neural net literature, when language is used which draws a (potential) dis-
tinction between the tw@'s, the goal is presented as finding the MARE.g., (Denker

and LeCun, 1991), (Weigend et al., 1992).) Indeed, most arguments for one or thg other
favor the MAP:

1) Regularized maximum likelihood techniques like spline fits can be viewed as finding
the@which best fits the data, subject to a penaltypdike its integrated curvature). Such
techniques - which work very well in practice - are akin to finding the gAFith P(p)

set by the “penalty o@’. (Note that usually there isn’t even a parameter spéder these
techniques - they’re non-parametric.)

2) There are not unreasonable distributions P(c | f, h, t) which say that one should find the
MAP @ exactly. For example, the “catastrophe” P(c | f, h, t) says that any deviation
between h and f will be catastrophic: P(c | f, h, & e+ d(h - f)). (A “catastrophe” corre-
sponds to ¢ = 0, no catastrophe to-&s) This means that E(c | h, ty-fdf P(f | t)&(h - f),

so that the Bayes-optimal h is the MAP f, argga | t). In example (1), botf § and

@y are (|Xx [Y[)-dimensional Euclidean vectors, and they're related by the identity map-
ping. Accordingly, the MAP f is the MAR for that examplé.
3) Simple utility: if you're going to use the MAP of a parameterpahther than ofp

directly, you have to decidghich parameterization scheme to use (and somehow justify
it). In general, there’s very little rigorous basis for such a decision.

4) One can argue that it makes sense to estimate a quantity as its MAP value simply
because that's the most likely value of that quantity, given the data. This is the implicit

(@ - V)2 ] 202 (@ - V)2 / 202
yze((px YZI20% and - yze((px A
o (2m) o (2m)
pPol[@]. For this case, to find the MAP f from the MA#Rwve must invoke yet another correction term.
In regard to this correction term, note that if K is the number of elements in O,BRPH. There-
fore f becomes infinite-dimensional as O = Y comes to approxiRf4{see footnote (5)), and extra
care must be exercised in the analysis. However generically, when Y does appreXirtizdim-
its on y become infinite, and there’s no way to distinguish values of our second correction term cor-
responding to different values @f; the correction term is a constant, independeng,0{As an
illustrative example take |X| = N = 1, so the metfjdrgduced by theb — F mapping is a X 1

8 However in example (2}, =
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See (Buntine and Weigend, 1991) for other possible choices of the prior and likelihood.
Just as in example (1), once the loss function and B(are set, we've completely speci-
fied the goal of our learning algorithm.

3) Decision theory, neural nets, and MAP estimators.

Summarizing, the y*'s of both our examples are determinethéwector of |X| values

fdw netfw, x) P | t). In the case of example (1), this is true independent of the loss func-
tion. In case of example (2), this integral arises only because of the loss function we chose
for that example, and because we tgg(W) to be symmetric in Y about net(x).

Unfortunately though, we can’t readily evalufde netv, x) Pv | t) and therefore can't
readily find our Bayes-optimal guess. (See (Neal, 1993) for advice on how to approximate
the integral via Monte Carlo methods.) One crude way out of this difficulty is to hope that
the mode of Ry | t) well approximates its mean, and that that MAProvides a similarly

good approximation for finding y*. So for instance in example (2), these hopes would

direct us to find thev, w*, which minimizesxz(w, t) + aw?. We would then interpret
netfv*, x) as (an approximation to) the Bayes-optimal guess for the function to which
noise was added to generate our training set. This is the implicit logic behind Bayesian
views of weight decay and the like.

This is perhaps the most natural way of grafting Bayesian decision theory onto (weight-
decay) BP. Unfortunately there are a number of odd aspects to this graft. To see this, first
recall that O is the space of possible patterns on a neural net’s output neurons. So in exam-
ple (1) o0 O is interpreted as a probability distribution of values y, given x (just like f),
whereas in example (2)[00 is interpreted as a value of y. Since in example (2) we must
assume that Y approximates a Euclidean vector space (see footnote (5)), in both examples
O is a Euclidean vector (or at least a good approximation to such a vector) of dimension
|O]. So in both examples, ngf(x) is a Euclidean vector, and net(.) is a mapping from

X to such a vector.

Next recall thatp 0 & denotes a mapping fromXX to o 0 O. Since X is finite, anypis

a vector of |X|O| real numbers. | will indicate the |O| real numbers inducegiftiya par-
ticular input x byg,. Now net(v, .) is a@, and netf, x) is ag,. Moreover, for the usual
reasongaw netfv, x) P(w | t) =[d@, @, P(@ | t) (see appendix (1)). We can rewrite this as
fdp @ P(@ | t). Therefore in either of our two examples y*(x, t) is determined by
fdo @, P(@| t). Accordingly, one might just as easily hope that y* is well-approximated if
one uses the mode of@(t) as hope that it is well-approximated if one usesgthesoci-

pendent ofoy . Intuitively, this means that our predictive distribution thinks that there is no noise in
the generation of the test set, despite the presence of noise in the generation of the training set.

7 Note that one might also try to use this kind of reasoning with thgrahfeg, @, x P(g | t). The
idea would be to set y*(x, t) using the set of |X| modes @f R (one mode for each x). Intuitively,
this correspond to setting y*(x, t) for each x to the mode of P(y | x, t). Unfortunately, gegiirig)P(
from P | t) is more difficult than getting 8( t) from P{v | t) - for each x one must add a step of

integrating over alpexy: Po, (@ | ) =[d@ 3(@y — @) Poyr(@ | )= fdw &(netiw, x) - @) P | 1).
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P | t) O P(t |w) Pw) to fix P(y, x, t) and therefore y*(x, t). As an example, one popular
choice is the weight-decay prior (0 exp(aw?) for some constamt. Another popular
choice is to write P(tW) = P(i | w) P(ty | tx, w), and assume R(§ w) has now-depen-
dence. (The general implications of havingR () be independent af are discussed in
(Wolpert, 1994).) Then one takes VP({ tx, w) O My P@E() | t(@), w), and
P(ty () | (). w) = netdw, t(D) -

Having set B¢ | t) and fixed the loss function, we've completely specified how we want
our learning algorithm to behave; we want it to guess the corresponding Bayes-optimal h.

Example 2: Consider schemes like those which use neural nets for “regression” (i.e., sur-
face-fitting). In these schemes the neural net output is not viewed as a direct conditional
probability distribution §, but rather as a Y value to which noise is added to,getSo

w doesn'’t directly code for a P(y | x), but rather for a mapping from an X value to a Y
value. This means that net(x) is a Y value, and we have (as an example) the y-depen-

dence of § ,(w) ~ N(net@w, x), 62, for some pre-fixeds.>

Intuitively, this is the familiar “function plus noise” scenario; we can vigy) as the

distribution generating training set output values when the “target” input-output function
is given by the weight vectav. For this scenario,

P(y, X, t) =fdw exp[-(net(, x) - y¥ / 26%] P | 1),

up to overall normalization constants. So as an example, if we have quadratic loss, then
y*(x, t) = fdw netfv, xX) P(w | t), independent af. (Note that we would not get so neat a
y*(x, t) if we used zero-one loss, like in example (1).)

As before, to set R(| t) we might have () O expaw?). However now we would prob-
ably have something like a gaussian noise likelihood, RQ 0 P(t, | tx, w) O

M; exp [-{net@, ty (@) - t,(0)} 2/ 201)?] = exp[x*(w, 1)].°

5 50 that statements like “the y-dependencg gfi) ~ N(netfw, X), 0%)” can be meaningful, in this
example it is implicitly assumed that although it is finite, Y is very large and consists of closely
spaced element &N for some N. Since we also are assuming thatvinet] is a Y value”, 1Y,

and strictly speaking the set of possible output values of the neural net is finite. (For the reasons dis-
cussed in section two this finiteness of O presents no foundational difficulties.) For simplicity, | will

assume that O = Y; since Y approxima®} so does O (again see section two). Note that despite
all these finite-but-large issues, bathand f , are still taken to be infinite-precision real-valued

numbers. Note also the notational convention that “|O|” means N.

6 Recall that our general form for P(c | h, f, t) assumes that training and testing sets are generated
identically, which means that must equab. However often when dealing with function+noise

scenarios we wish to guess the target function directly (rather than that function with noise added).
To deal with this formally, one must change P(c | h, f, t) so that P(test set output;\aiest get

input value x, f) does not equr:;(lyff , but rather equals a (y-space) delta function centered at the
mode of (the y-dependence of) the Gaussian funcfipnThis is equivalent to settingto 0, inde-
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error.

It's easy to verify that for the E(c | h, t) given above, to produce the Bayes-optimal h your
algorithm must i) take each x and find y*(x, t), the walue that minimizes the sum

ny L(ys. Yn) P(ys, X, t) for that x; and then ii) outpug b = &(y, y*(x, t)). In other words,
for any x optimal behavior is to guess the Y value y*(x, t). Since the Bayes-optimal h is

fixed by the loss function and the predictive distribution, and since the user specifies the
loss function, all of the statistical inference reduces to finding the predictive distribution.

As an example, by settird)/dyy, [ny L(vs, Yn) P(ys, X, t)] = O, we see that for quadratic
loss y*(x, t) :ny vi P(Ys, X, t). (When the predictive distribution equalsR(¥, t), this is
just the posterior expected y, E(W, t).) As another example, for zero-one loss y*(x, t) =
argmax, P(ys, X, t).

2) Decision theory and neural nets.

To relate the foregoing to neural nets, we need to cast neural net weight veesrs
parameters of X-Y relationships f. Accordingly, we must specify the coordinate transfor-
mation taking (Euclidean vectorg)to (Euclidean vectors) f. In the examples of this pre-
sented below, attention is implicitly restricted to neural nets with continuously
differentiable activation functions.

Example 1: In schemes like softmax (Bridle, 1990¥lirectly parameterizes a conditional
distribution f, with the output neuron index giving y. More formally, in these scheames
fixes f via the rule,f,(w) = netfv, x),, where by “netf, x)" is meant the vector of the val-

ues of output neurons which arises when input x is propagated through a net with weight
vectorw, and the subscript 'y’ denotes the y'th output neuron. (N.bwned(, must be
non-negative and normalized over y for this probabilistic interpretation of the net's output
to be valid; to ensure this “net( x)” is usually a neural net used with a bit of post-pro-
cessing.)

Since there can be f's which don'’t correspond toanipr perhaps correspond to more
than onew), one must be careful in convertiRgy, X, t) from an f-space integral to a w-
space integral. Following along with the standard procedure (see appendix (1)), one gets

P(y, x, ) =fdw netfw, x), P(w | t) = [fdw netfv, X) P | t) J,.

So as an example, for this scenario, with zero-one loss, the Bayes-optimal guess is given
by y*(x, t) = argmay fdw netfw, X), P | t).

The usual next step is to set the likelihood R{) nd prior P{), and plug these into

value of ¢ - the loss - is the average of the utility over the entire set of users. Write that I¢iss as L
Vs, X). For this scenario P(c | f, h, t)ziyf T(x) P(y | x, ) &(c, L*(h, Vi, X)), which means that E(c | f,

h, ) =Z,y 1) Py | x, ) L"(h, ¥, x). For many choices of ., ., .) this E(c | f, h, t) can not be
written aszx,yh,yf T(X) P(¥% | X, ) PO | X, h)L(Y+, ¥p) for some function L(., .). QED.
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E(C | h, t)=fdf [dc [cpcjn,r A(C | h, f, Opgr(f [ D]
In the P notation this is written as
E(c | h, )= [df dc [cP(c | h, f, tP(f | t)].

So long as we can identify a distribution h produced by our learning algorithm and so long
as the real-world cost can be (perhaps only statistically) related to f, h, and t, the goal of
finding the h minimizing E(c | h, t) is well-defined. Note that to meet this goal we need to
know P(c | h, f, t). This distribution in effect defines what we mean by “loss”. It is set by
the supervised learning scenario at hand, and by how the end-user uses h.

As an example - one followed for most of the rest of this appendix - often when we're
given h and f, to find a value of the random variable C we: i) randomly choose an x value
x' according to some pre-fixed distributiofx); ii) randomly sample the y-dependence of
hy y to get a guessed y valugy, ¥ii) randomly sample the y dependence gf; to get a

“true” or “test set” y value y and finally iv) set c to the value L{yy;) for some function

L(., .)2L(., .) is the loss function for this procedure, and should reflect the real-world cost
of guessing ywhen the “true” y value is;yTypical pedagogical choices are the quadratic

loss, L(a, b) = (a - B) and the zero-one loss, L(a, b) =d&(a, b).

With this procedure for generating values of_c, P(c | h, f, t) is given by the sum
nyyh’yf T(X) P(ys | X, ) POy, | X, h)d(c, L(Y, ¥§)- This means that

E(c |, 1) Sy, y, { THX) By, LY Vi) Jlf fy PEETD) )

In the context of this P(c | h, f, t), with slight abuse of convention the term “predictive dis-
tribution” will meandf fX,y]c P(f | t). I will write this integral aB(yz, X, t). Often x is statis-
tically independent of t, in which caBéys, X, t) = P(y | X, t), so thaP(y;, X, t) “predicts”

the probability of the test set outpyt given training set t and test set input x.

Our equation for E(c | h, t) should be familiar - it closely resembles what in the neural net
community is sometimes defined as “generalization error”, or (average) “test set error”.
Indeed, for our P(c | f, h, t), as it's usually defined the generalization error is identical to

E(c|h, f)=E(c|f h 1)y v { TX) hey L W) Fuy, 3% Accordingly, E(c | h, 1) is

just the (posterior) average, over all f, of the generalization error for a particular h and f.
The Bayes-optimal h is simply the h that minimizes this posterior expected generalization

3 Note the assumption in step (iii) that the test set is generated from x values and f in the same way
that t is. In general, R({) | tk(i), f) = ftx(i), ty () O i, but P(test set output y' | test set input x% f)

fy:x if the process generating the test set is different from the process generating the training set t.

41t's important to understand that this “generalization error” form for E(c | f, h, t) spradri nec-

essary in any sense. Many other forms are reasonable. As an example, in an extension of the sce-
nario considered in (Rosen, 1994), a value of c is generated as follows: The distribution f is sampled
to get y, andm(x) is sampled to get x, as usual. The learner then provigdes-hgenerated in
response to t - to a distribution of “users”. Each user, following his own algorithm, ysasdx

to make a “decision” W U. Each such user’s u is combined withty get a “utility” value. The
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Appendix Two: Bayesian decision theory and neural nets.

This appendix casts BP in terms of (predictive paradigm) Bayesian decision theory (Berger,
1985; Titterington, 1985), using a variation of the formalism in (Wolpert, 1992). To illus-
trate the discussion, this appendix will examine both an example where O is the direct ob-
ject of interest (e.g., when one uses neural nets for regression) and an example where O
gives relative probabilities of possible values of the direct object of interest (e.g., when one
uses neural nets for classification in concert with a scheme like softmax). The first part of
the appendix presents a cursory overview of (the salient aspects of) decision theory, the sec-
ond section relates decision theory to neural nets, and the third section uses this to discuss
various kinds of MAP estimators involving neural nets.

Wherever possible “P” notation will be used: the arguments of a “P” indicates if it's a
probability or a density, and if the latter, what random variable it's over.

1) A quick review of Bayesian decision theory.

Assume we have an input space X and an output space Y. For expository simplicity, | will
take both to be finite (although sometimes Y will implicitly be assumed to be a very large
set of closely spaced real numbers). In generalnétithe same as the space O discussed
in the text - the space O will enter the analysis later.

Let ‘f" be a function giving the probability of ¥ Y conditioned on X1 X. This is indi-
cated by writing P(y | x, f) 5. (Note that f is a vector of real numbers, with components

fy,y-) When extra precision is required, ‘F’ will indicate the random variable of which ‘f'is
an instantiation. So for examplegRe(y | x, f) =% .

f labels the “true” or “target” conditional distribution of y given X, in that the training set is
generated according to f. In other words, P(t | f) is our likelihood function. For the pur-
poses of this paper, this means thay P¢, f) =1, ftx(i), ty (i) Of course, we don’t know

f, only the training sett - loosely speaking, our goal is to use t to guess f.

Let h, be the x-conditioned probability distribution over values y which is produced by
our learning algorithm in response to t. Sometimes our algorithm’s “output” is a quantity
based on h (e.g., our algoirthm might produce a decision of some sort based on h). But
often h itself is the output of our algorithm. In particular, if our algorithm’s output is a
guessed function from X to Y, and if our algorithm always guesses the same function
when trained on the same data t, thep is of the formd(y, n(x, t)) for some function

ne, .). (See examples (1) and (2) below.)
Now define a real-world (usually random variable) quantity C which represents the “loss”

(or what in some circumstances is called “cost” or “utility” or “value”) associated with a
particular § , and k y. For each t we want our learning algorithm to produce the associ-

ated “Bayes-optimal” i, which is the R, minimizing the posterior expected loss
E(C | h, t)= fdf [d(loss values €) [pcn,r A(C | h, f, g o(f | h, )]

Now in supervised learning the output of a learning algorithm h and the target f are only
coupled through the training set t, i.e., if we know t, knowing h as well doesn’t help in
nailing down f. Accordingly (see (Wolpert, 1992)yp+(f, | h, t) = g1(f | 1), and



Appendix One: The irrelevance of choice of integration
variablesfor calculating moments.

This appendix reviews the standard proof that expectation values are “independent” of the
choice of integration variables, i.e., that there's no correction term for calculating
moments. The result is recapitulated here due to its importance for this paper’s results.

Let “Pr” indicate probabilities, and “p” indicate probability densities (as in the text)) Let

be a U]-dimensional real-valued random variable, &nd V|-dimensional random vari-
able. A particular value df is indicated by, and a particular value &f is indicated by

u. In addition taJ andV, we have a random varialbe(with valuesd) which will be used

for conditioning probability densities. The results claimed in the text obtain if one substi-
tutesU for W, andT for D and either F o# (as the case might be) fgt

It is assumed thaf is given in terms ob via V; = nef(U) (i is a component o¥). No

other assumptions are made. In particular, no assumptions are made about the single-val-
uedness (or even the existence, foMalbf the mapping fronv to U, and no assumption
is made about the relative sizesWdfandY/|.

We want to evaluate E(¥( | d) = fdv Z(v) pyp(v | d) for some function Z(.). (In most of
this paper, 4f) =v.)

First write g/p(v [d) = avl '"aVIVI {Pr(Vi<vy ...V <vyld)}.

Y%
Then expand Puy <vy, ...,V <Vyy; | d) = fdu [ pyp(u [d) x ML, 8(v; - nef(w) ],
wheref(.) is the Heaviside step function.
Interchange orders of integration:

OV Z() Pupplv ) = v Z() 9, -0y, { Sdu [ pup(u 1) x MLy 6(vi - nef(w) 1}
= Jdul pup(u | ) Jav Z(v) 8, .3y, {M'iLy BY; - nef(u) } .
Evaluating the partial derivatives, we get

E(Z(V) 1) = feu [ pyp(u |d)  fov Z(v) MLy &(v; - nef(u))
= [du [ pyjp(u |d) x Z(net(u), neb(u), ..., nef,(u)) ].
This gives our final result:

E(Z(V) |d) = fdv pyp(v |d) Z(v) =fdu [ pyp(u |d) x Z(ney(u), nep(u), ..., nef,(w) 1.



parameterd, > 0 and\, > 0.

4 BEYOND THE CASE OF BACKPROP WITH |W/|= [X| [O]

When O does not approximate a Euclidean vector space, eleménteawé probabilities
rather than probability densities, andpP¢) = fdw pyr(w | t) 3(netw, .), @), (3(., .) being

a Kronecker delta function). Moreover, if O is a Euclidean vector spac&/bat |X| |O|,

then again one must evaluate a difficult integ#ak: net{V, .) is not one-to-one so one
must use equation (1) rather than (2). In fact, widgre| |X| |O|, even uncorrected BP can

be somewhat problematic (e.g., the local minima of unregularized, uncorrected BP generi-
cally will be hypersurfaces rather than isolated points, so that the procedure’s stopping
point isn't well-defined). Fortunately, these two situations are relatively rare.

The final case to consider /| < |X] |O| (see section (2)). LeV$) be the surface i®
which is the image (under nei( .)) of W. For allg py(¢) is either zero (wheg O S(W))

or infinite (wheng O S(W)). So as conventionally defined, “MAP is not meaningful.

One way to deal with this case is to embed the net in a larger net, where that larger net’s
output is relatively insensitive to the values of the newly added weights. An alternative
that is applicable whei\|| / |O| is an integer is to reduce X by removing “uninteresting”
x's. A third alternative is to consider surface densities 0W)Js)(@), instead of vol-

ume densities oveb, py(@). Such surice densities arevg@n by equation (2), if one uses

the metric form of g,y (w). (Buntine has emphasized that the Jacobian form is not even
defined forW| < [X| |O], sincég / dw; is not square then (personal communication).)

As an aside, note that restricting(p) to SW) is an example of the common theoretical
assumption that “target functions” come from a pre-chosen “concept class”. In practice
such an assumption is usually ludicrous - whenever it is made there is an implicit hope that
it constitutes a valid approximation to a more reasonag(e)p

When decision theory is incorporated into Bayesian analysis, only rarely does it advise us
to evaluate an MAP quantity (i.e., use BP). Instead Bayesian decision theory usually
advises us to evaluate quantities likeg () =[do por(¢ | t) @ (see appendix (2)). Just as

it does for the use of MAP estimators, the analysis of this paper has implications for the
use of such B | t) estimators. In particular, if we don’t modify the prior to remove the
singularities in the correction term (see previous section), then those singularities occur in
the integrand of Ep | t). Accordingly, one would expect tlps around those singularities

to be “major contributors” to the integral. (Whether or not they dominate the integral
depends on the precise mapping fidfhto @.)

A related implication for Bayesian decision theory comes from the fact that one way to
evaluate EP| t) = fdw pyr(w | t) net, .) is to expand nel, .) to low order and then
approximatepyyr(w | t) as a sum of Gaussia(Buntine and Wigend, 1991). 6 the case

where W| = |X] |O] and wee modified the prior to remre singularities, equation (4) sug-
gests an alterna: write EQ | t) asjdg pyr(¢ | t) ¢ and approximatpe (@[ t) as a sum

of Gaussians, as discussed in appendix (4). (Note tht # |X| |Ofthen gy (| t) can't

be approximated as a Gaussian.) Since fewer approximations are used (no low order
expansion of net, .)), this might be more accurate. Of course, if the dimension of the
space over which we're integrating is large, no scheme based on behavior around the
peaks of some terms in the integrand is likely to give a good approximation.



ing into neuron K without affecting neif, .), the integral diverges for nowhere-zero
pw(W). (Recall thad(netfw', .) - netv*, .)) is actually a product of delta functions.) So

w* is singular; removing a hidden neuron results in an enhanced probability. This consti-
tutes ara priori argument in favor of trying to remove hidden neurons during training.

This argument does not apply to weights leadiitg a hidden neuronjg (W) treats
weights in different layers differently. This fact suggests that howegyéw)pcompen-
sates for the singularities &3,y(w), weights in different layers should be treated differ-
ently by gy(w). This is in accord with the advice given in (MacKay, 1992).

To see that some kinds of weight-shared nete Bangular weights, let' be a weight vec-

tor such that for any two hidden neurons K and K' the weight from input neuron i to K
equals the weight from i to K', for all input neurons i. In other wards,such that all hid-

den neurons compute identical functions of x. (For some architectures we’ll actually only
need a single pair of hidden neurons to be identical.) Usually for such a situation there is a
pair of columns of the matridq / dw; which are gactly proportional to one anothéFor
example, in a 3-2-1 architecture, with X = {2,31}\N| = |X|x|O] = 8, and there are four

such pairs of columns.) This means thgjdw’) = O;w' has an enhanced probabilignd

we hare ana priori argument in favor of trying to equate hidden neurons during training

The agument that feature-selected netsenhaingular weights is architecture-dependent,
and there might be reasonable architectures for whicilst flo illustrate the ajument,
consider the 3-2-1 architecture. Lgtk) and %(k) with k = {1, 2, 3} designate three dis-

tinct pairs of input ectors. IBr each k hee x (k) and »(k) be identical for all input neu-
rons ecept neuron A, for which tlyediffer. (Note there are four pairs of inputators
with this propertyone for each of the four possible pattermsranput neurons B and C.)
Let w' be a weight vector such thladth weights leang A equal zero. &t thissituation
netfw', xi(k)) = net@', xp(k)) for all k. In additiond netfv, x((k)) / ow; =
0 netfw, xo(k)) / ow; for all weightsw; except the tw which lead out of A. So k = 1\gis
us a pair of rars of the matribdq / ow; which are identical in allut two entries (one w
for x4(k) and one for ¥k)). We get another such pair ofws, differing from each other in

the xact same tw entries, for k = 2, and yet another pair for k = 3. So there is a linear
combination of these sixws which is all zeroes. This means thagjdw') = 0. This con-

stitutes ara priori argument in favor of trying to remove input neurons during training.

Since it doesn’t favor anyp(w), the analysis of this paper doesn't favor ay{.
Indeed, this paper’s analysis implies that settiggw) without any concern for how
fixes @ - which is how many traditionalp(w) are set - is a dubious way of setting priors.

Nonetheless, when combined with empirical knowledge the analysis of thisspggets
certain py(@). For example, there are functionswyfvhich empirically are known to be
good choices for g(netfwv, .)) (e.g., o) Dexp[orwz]). There are usually problems with
such choices ofg(¢) though. For example, theseng(usually make more sense as a prior
overW than as a prior oveb, which implies that one should instead ugénetfv, .)) =
gWw) / Jpw(w). Moreover it's empirically true that enhancedshould be favored over

otherw, as advised by the correction term. So it makes sense to choose a compromise
between the two candidate forms feg(petfw, .)), glw) and g) / Jpw(W). An example

of such a compromise igpfetfw, .)) 0 gw) / [ Aq + tanh@y % Jpy\w(W)) ] for two hyper-



does. Since the correction term “pushes aytind since tanh(.) gne with its agument,
a@found by modified BP has @&r (in magnitude)alues of o than does the correspond-
ing ¢ found by unmodified BRn addition, unlile unmodified BPmodified BP has multi-

ple extrema @er certain rgimes. All of this is illustrated in figures (1) through (3), which
graph the &lue of o resulting from using modified BP with a particular training set t and
input value x vs. thealue of o resulting from using unmodified BP with t and x. Figure (4)
depicts thew;-dependences of the weight decay term and of the weight-decay term plus

the correction term. (When theseio data, BP searches for minima of thoseesijv

Now consider multi-layer nets, possibly with non-unary X. Denotectov of the compo-
nents ofw which lead from the input layer into hidden neuron Kwgy;. Letx' be the
input vector consisting of all 8 Thend tanh{vy; - x’) / ow; = 0 for ary j, w, and K and
for ary w, there is a rv of 0@ / dw; which is all zeroes. This in turn means thgjdw) =

0 for anyw, which means thaw,; is empty, anc|b¢|T(<p| t) is independent of the data t.
(Intuitively, this problem arises since the o corresponding tan't vary withw, and
therefore the dimension df is less tharMy/|.) So we must forbid such an all-zeraés
The easiest way to do this to require that one input neuroways be on, i.e., introduce a
bias unit. An alternate is to redefin@ to be the functions from the set {X - (0, O, ..., 0)}
to O rather than from the set X to O. Another alteweatappropriate when the original X
is the set of all input neuroregtors consisting of §'and 13, is to instead ha input neu-
ronvaluesl {z # 0, 1}. This is the solution implicitly assumed fromwnon.

As an aside, one should note that in general this z can not equal -1; due to the symmetries
of the tanh, for manarchitectures z = -1 means thaotvaws ofdq / ow; are identical up

to an werall sign, which means thag,(w) = O. Intuitively, for those architectures, spec-
ifying the output associated with input x Wea us no freedom in what the output associ-
ated with input -x is. So in fefct, the dimension ab is less than that o.

Jpw(w) will be small - and thereforegnetfw, .)) will be lage - wheneer one can mak
large changes ter without afecting @ = netfv, .) much. In other ards, p,(netfw, .)) will

be lage wheneer we dort need to specifyv very accuratelySo the correctionattor
favors thosev which can bexpressed with f& bits. In other wrds, the correctiorattor
enforces a sort of automatic MDL (Rissanen, 1986ylso and Hinton, 1994).

More generallyfor ary multi-layer architecture there are nyeisingular weights'wg;, O
Wipj such that g (Wsjr) is not just small bt equals zeroxactly. py(w) must compen-
sate for these singularities, or the peaksgi(® | t) won't depend on t. So we need to
have py(w) - 0 asw — wgj, Sometimes this happens automaticeftyr example often
Wqin includes infinite-aluedw’s, since tanhi§) = 0. Because,p(«) = O for the weight-
decay priorthat prior compensates for the infinitesingularities in the correction term

For othemwg;, there is no such automatic compensation, and we tosexplicitly modify

pw (W) to avoid singularities. In doing so though it seems reasonable to maintain a “bias”
towards thews;,, that gy(w) goes to zero sily enough so that thealues g,(netfw, .))

are “enhanced” fow nearwg;,. Although a full characterization of such enhanegd not

in hand, it5 easy to see that thanclude certain kinds of pruned nets (Hassibi and Stork,
1992), weight-shared nets (N@n and Hinton, 1994), and feature-selected nets.

To see that (some kinds of) pruned netgehsingular weights, let* be a weight vector

with a zero-valued weight coming out of hidden neuron K. By @netfv*, .)) =

fdw' py(W") d(nety', .) - netiv*, .)). Since we can vary the value of each weightlead-



tion constant). Then jr(netfw, .) | t) = Ryjr(w | t). So by redefining what we call the

prior we can justify use of ceantional uncorrected BP; the meMAP ¢ corresponds to
thew minimizing M(w, t). However such a redefinition changestE[(t) (amongst other
things): fd@ p*er(@ | 1) ¢ = fdw p*wr(w | t) net, .) # fdw pyr(w | t) net, .) =
Jd® poT(@ | t) @ So one can either modify BP (by adding in the correction term) avel lea
E(® | t) alone, or leze BP alone bt change EP | t); one can not lea both unchanged.

Moreover, some proceduresvialve both priofbased modes and pribased intgrals, and
therefore are &cted by the correction term no mattenhmy, (w) is redefined. & exam-

ple, in the gidence procedure (Wpert and Strauss, 1994; MacKd®92) one figs the
value of a perparameteF (e.g.,a from the introduction) to thealuey maximizing
Pr (Y | t). Next one finds the alue s" maximizing g (s | t,y) for some wariable S.

Finally, one guesses tlggassociated with s'. Moit’s hard to see whone should use this
procedure with S ¥V (as is comentional) rather than with S @. But with S =® rather
thanW, one mustdctor in the correction term when calculatinggp (s | ty), and there-

fore the guessed is different from when S ¥V. If one tries to woid this change in the
guessedp by absorbing the correction term into the prigjftw |y), then p|r(y | t) -

which is gven by an intgral irvolving that prior - changes. This in turn changesnd
therefore the guessgdagain is diferent. So presuming one is more directly interested in
& rather tharW, one cart avoid having the correction term fafct the ®idence procedure.

It should be noted that calculating the correction term can be laboriougémiets. One
should bear in mind the determinangkiation tricks mentioned in (Buntine and
Weigend, 1991), as well as otherselithe identity In[ ¢ (w) ] = Tr(In[ 0@ / ow; ]) U

Tr(In*[ 0@ / ow; ]), where In*(.) is In(.) evaluated to several orders.

3 EFFECTSOF THE CORRECTION TERM

To illustrate the effects of the correction term, consider a perceptron with a single output
neuron, N input neurons and a unary input space: o =wan$)( andx always consist of

a single one and N - 1 zeroes. For this scergivow; is an Nx N diagonal matrix, and

In[ Jp ww) ] = ZZk 1 In[ coshv,) ]. Assume the Gaussian prior and likelihood of the

introduction, and for simplicity takeo? = 1. BothM(w, t) andM'(w, t) are sums of terms
each of which only concerns one weight and the corresponding input neuron. Accord-
ingly, it suffices to consider just the i'th weight and the corresponding input neuron.

Let x(i) be the input gctor which has its 1 in neuron i. Lg(i)be the output of the th
of the pairs in the training set with inpu(f), and m the number of such pairs itWa =0
(no weight decay), M, t) = 2(t W) which is minimized byw'; = tanhl[ Z oJ(|) /
my]. If we instead try to minimizg (t w) + Jpw (W) though, then for by enough m(e.g.,
m; = 1), we find that there is no minim/he correction term pushesaway fromO,
and for lav enough mthe likelihood isnt strong enough to counteract this push.

When weight-decay is used though, modified BP finds a solution, jesirikodified BP

2 Minimizing x2(t, w) + Jpw (W) corresponds to finding the MAgfor flat py(w). Note that neither
the MAP @ for flat pp(¢p) nor the MAPw for flat p,, (W) have the no-minimum problem; both MAS’
give the maximum liklihood (ML) .



implementations of such a measure. In partictiter correction term changes theation
of the peakw'. It also suggests tha peak’squality be measured by the Hessian of

M'(W', t) with respect tap, rather than by the Hessian ofWi(t) with respect tov.! (Note
though that calculatinthe Hessian of M, t) with respect tap is usually more difcult
than calculating the Hessian of M( t) with respect tov - see appendix (4).)

If we stipulate that thegr(¢ | t) one encounters in the reabnd is independent diow

one chooses to parameterikethen the probability densityf our parameter must depend
on hav it gets mapped t®. This is the basis of the correction term. As this suggests, the
correction term wn't arise if we use noanpr((p| t)-based estimators, #kmaximum-lile-
lihood estimators. (This is a basicfdiience between such estimators and MAP estimators
with a uniform prior) The correction term is also irrgnt if it we use an MAP estimate
but Jp\y(W) is independent ok (as when net, .) depends linearly ow). And even for
non-linear net, .), the correction term has nffext for some non-MAP-based ways to
apply Bayesianism to neural nets, like guessing the posterior avei@gal, 1993):

E(® | )= fdo poir(@] 1) ¢ = fdw pyr(w | 1) netw, .), (4)

S0 one can calculate ®( t) by working inW, without any concern for a correction term
(Loosely speaking, the Jacobian associated with changimgatiten \ariables cancels the
Jacobian associated with changing trguarent of the probability densiti formal deri-
vation - applicableven when\\V|# |X| |O| - is in appendix (1).)

One might think that since #'independent of t, the correction term can be absorbed into
pw (W). Ironically, it is precisely becausguantities lile E@ | t) arent affected by the cor-

rection term that this is impossible: Absorb the correction term into the gikitg a nev
prior p*y(w) = d py (W) Jpw(W) (asterisks refers to medensities, and d is a normaliza-

in evaluating quantities lig output-ariances. ® understand this, let z denote an element of O, and
let d(x") denote the |O| components ®fassociated with some particular input x'. (Recall tas

an (|X[x |O])-dimensional randomaviable.) Considefdz [z - net(', x')]2 PoeyT( | 1). This is the
variance in the output at x', about theue net@’, x). It gives an idea of he justified you are in

estimating the output at x' as net(x"). The verkers in question often wish toa@uate this ariance
whenw' is a local maximum of\gir(w | t). One wvay to (try to) do this starts byweiting the \ari-

ance agdg [@(x) - net@v', )1 poyr(® | ), which equalgdw [net, x) - net@v’, X)I* pyr(w | 9
(whether or notW| = |X]| |O| - see appendix (1)). Up to this poimrgthings exact. Nav approxi-
mate the g r(w | t) in the intgrand as a Gaussian about the local maxinunexpand [net, x) -

net@’, x)] to low order and ®aluate the resultant Gaussian gre. The resultantatue is quoted
by some wrkers as equalling the desiredriance. (The Hessian of Mi(t) enters the picture in
forming the Gaussian approximation igp(w | t).) The problem with this single-Hessian approxi-
mation is that @r(w | t) usually has manlocal maxima. And thev-integral in question is almost
always dominated bypr(w | t) at the other local maxima besides (This is because the quantity

[net(w, X) - net(', x)]2 is usually much larger far near those other maxima than it is fonear
w'.) In such a situatiorthe estimate of the outpuatiance produced by the single-Hessian approxi-
mation is essentially useless. At a minimum, one mxemee a representad subset of all the
maxima to get a decent estimate of the outptibmce. (See (Buntine andeWfend, 1991) for a cur-
sory discussion of o to tale those other maxima into account.) Unfortunatetyen Y| is lage
even this doesm’sufice; for suchw the intgral is unlilely to be dominated by the (relatly tiny)

part of the space corresponding to the maxima, and one learns nothiegrigieg those maxima.



the other i-o functions, with(.) being the multiariable Dirac delta function,

Porr(Nett, ) =[dw' pyr(w) S(netf', .) - netgy, .)). (1)
When the mapping = net{V, .) is one-to-onewe can evaluate equation (1) to get
Porr(net®, ) [ 1) = pwr(w [ 1)/ Jow (W), )
where 4y (W) is the Jacobian of th&/ - ® mapping:
Jow(W) = | det[od; /oW, ](w) | = |det[d netf, .) /ow; ] |. (3)

“net(w, .)" means the th component of the i-o function net(.). “netfv, x)” means the
vector o mapped by net(.) from the input x, and “net( x),” is the k'th component of o.
So the “” in “netfy, .);" refers to a pair ofalues {x, k}. Each matrixaluedq / aw; is the
partial dervative of netg, X), with resgect to some weighfor some x and K gy (W) can
be rewritten as d&? [gij(w)], where g(w) = Zy [ (0¢ / Ow;) (09 / Ow;) ] is the metric of
theW - @ mapping.This form of &y (w) is usually more laborious tovauate though.

Unfortunately@ = netfv, .) isnot one-to-one; wherd,y(w) # 0 the mapping isocally
one-to-one, but there are glo®immetries which ensure that more than aneorre-
sponds to eact. Such symmetries arise from permuting the hidden neurons or changing
the sign of all weights leading into or out of a hidden neuron - seferffReh, 1993) and
references therein. ¢F simplicity, we restrict attention to the usual case (for wiéh<

[X] |O where the number o¥ corresponding to a particul@is finite.) The easiestay to
circumwent the dificulty of this non-injectiity is to male a pair of assumptions.

To begin, restrict attention t9V;,;, thosevaluesw of the variabléW for which the Jaco-
bian is non-zero. This ensures local injétyi of the map betweewW and®. Given a par-
ticularw O Wiy, let k be the number of' [J Wjy,; such that ne(, .) = netv', .). (Since
netfw, .) = net, .), k= 1.) Such a set of kectors form an equalence class,\}.

The first assumption is that for all [J W;y,; the size of {} (i.e., k) is the same. This will
be the case if wexelude dgeneratev (e.g.,w’'s with all first layer weights set to 0). The
second assumption is that for afl andw in the same equivalence clagg,p (W | d) =
Pwip (W' | d). This assumption also usually holdr(Bample, start wittw' and relabel
hidden neurons to get amev O {w'}. If we have the Gaussian lélihood and prigrthen
since neither diérs for the tvo w's the weight-posterior is also the same for thevive.)

Given these assumptionsgp(netfw, .) | t) = k py (W | t)/ Jpw(w). So rather than mini-
mize the usual cost function, M(t), to find the MAP® BP should minimize M, t) =
M(w, t) + In[ Jp\w(w) ]. The In[ & (W) ] term constitutes a correction term to ven-
tional BR (Note that when the pair of assumptions tlbold, the only change in the anal-

ysis is the addition of some booképing - for eactv' the correction term nomust tale
into account k and o pyyr(w | t) varies amongst the elements of},)

One should not confuse the correction term with other quantities in the neural net litera-
ture which iwolve partial desiative matrices. As arxample, one @&y to characterize the
“quality” of a local peakw' of a cost function wolves the Hessian of that cost function
(Buntine and Wigend, 1991). The correction term dogslirectly concern thealidity of

such a Hessian-based quality measurewdder it does concern thealdity of some

1 As an aside on the subject of Hessians, it should be noted that sokeesvincorrectly use them



for example with the Gaussian likelihood and weight decay prior, the most prabgivie

en the data is the minimizingx3(w, t) + aw?. Accordingly BP with weight decay can be
viewed as a scheme for trying to find the function from input neuron values to output neu-
ron values (i-o function) induced by the MAP

One peculiar aspect of this justification of weight-decay BP is the fact that rather than the
i-o function induced by the most probahleight vector, in practice one would usually pre-

fer to know the most probable ifanction. (In few situations would one care more about a
weight vector than about what that weight vector parameterizes.) Unfortunately, the differ-
ence between these two i-o functions can be large; in generabittizie that “the most
probable output corresponds to the most probable parameter” (Denker and LeCun, 1991).

This paper shows that to find the MAP i-o function rather than the ARe adds a “cor-
rection term” to conventional BP. That term biases one towards i-o functions with small
description lengths, and in particular favors feature-selection, pruning and weight-sharing.
In this that term constitutes a theoretical argument for those techniques. (A decision-theo-
retic discussion of the merits of MAP estimators in general can be found in appendix (2).)

Although cast in terms of neural nets, this paper’s analysis applies to any case where con-
vention is to use the MAP value of a parameter encoding Q to estimate the value of Q.

2 BACKPROP OVER I-O FUNCTIONS

Assume the net’s architecture is fixed, and that weight vesttve in a Euclidean vector
spaceW of dimension\\V|. Let X be the set of vectors x which can be loaded on the input
neurons, and O the set of vectors o which can be read off the output neurons. Assume that
the number of elements in X (|X]) is finite. This is always the case in the real world, where
measuring devices have finite precision, and where the computers used to emulate neural
nets are finite state machines. (In addition, in practice we can restrict X to be the input val-
ues of the test set, in which case X is explicitly finite. See appendix (3).) For similar reasons
O s also finite in practice. However for now assume that O is very large and “fine-grained”,
and approximate it as a Euclidean vector space of dimension |O|. (This assumption usually
holds with neural nets, where output values are treatedeal-valued vectors.) This as-
sumption will be relaxed later.

Indicate the set of functions taking X to O ®y(netfv, .) is an element gb.) Any o 0 ®
is an (|X||O])-dimensional Euclidean vector. Accordingly, densities Bvere related to
densities overd by the usual rules for transforming densities betw&éprdjmensional
and (|X]| |OJ)-dimensional Euclidean vector spatksre are three cases to consider:

1) [W]| < |X] |OJ. In general, as one varies ovew&l the corresponding i-o func-
tions net{v, .) map out a sub-manifold df having lower dimension thab.

2) [W| > |X] |OJ. There are an infinite numbema$ corresponding to eaah

3) [W| = [X| |O]. This is the easiest case to analyze in detail. Accordingly | will deal

with it first, deferring discussion of cases (1) and (2) until later.

With some abse of notation, let capital letters indicate rand@mables and lver case
letters indicate @lues of randomariables. So forneamplew is a \alue of the weighterctor
random wariableW. Use ‘p’ to indicate probability densities. So feeple py (9| ) is
the density of the i-o function randoranable®, conditioned on the training set random
variable T and @aluated at thealuesd =@and T =t.

In general, ayi-o function not &pressible as net( .) for somev has zero probabilityror
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Abstract

The conventional Bayesian justification for backprop is that it finds the
MAP weight vector. As this paper shows, to find the MAP i-o function
instead, one must add a correction term to backprop. That term biases one
towards i-o functions with small description lengths, and in particular fa-
vors (some kinds of) feature-selection, pruning, and weight-sharing. This
can be viewed as anpriori argument in favor of those techniques.

1 INTRODUCTION

In the conventional Bayesian view of backpropagation (BP) (Buntine and Weigend, 1991,
Nowlan and Hinton, 1994; MacKay, 1992; Wolpert, 1993), one starts with the “likelihood”
conditional distribution P(training set = t | weight veatgrand the “prior” distribution

P). As an example, in regression one might have a “Gaussian likelihood"wpP(T |

exp[x%(w, t)] = ; exp [-{net@w, tx (i) - t,(i)} 2/ 207 for some constar. (ty (i) and (i)
are the successive input and output values in the training set respectively, and) iet(
the function, induced by, taking input neuron values to output neuron values.) As another

example, the “weight decay” (Gaussian) prior i&( exp(a(wz)) for some constamt.
Bayes’ theorem tells us thatP[t) O P(t |w) P{w). Accordingly, the most probable weight

given the data - the “maximum a posteriori” (MAR} is the mode ovewx of P(t |w) PW),
which equals the mode overof the “cost function'M(w, t) = In[P(t |w)] + In[P(w)]. So



